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Introduction

Many metals form the dinuclear acetate structurg(fMO,-
CCHg)4L).t Perhaps the best known example is the Rh(ll)
dimer [Rhp(u-O,CCHg)4(H20),], which contains a single Rh
Rh bond arising from the’d” 027%326*%7x** orbital configu-
ration12 Although the related @’ dinuclear complexes of
Pt(ll1) involving bridging sulfate (SG¥), hydrogen phosphate
(HPO2), and pyrophosphite (#P,0s2") ligands are well-
known, the analogous Pt(l1l) acetate dimers(fRO,CCH)sL )™
have only recently been reporté.

We recently investigated the electronic structure of the
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Pt(lll) formate dimer [P{O,CH)4(H.0),]?" using the quasi-
relativistic Xa-SW method and on the basis of these calculations
made tentative assignments for the electronic spectrum of the
analogous acetate-bridged dimer y[PbCCHg)4(H20)z]% .30
Although the Xo.-SW calculations showed that the Pt(Ill) dimer
possessed a metainetal single bond, analogous to the Rh(ll)
complex, the energetic ordering of the main metaktal
bonding orbitals was quite different. Furthermore, the calcula-

Figure 1. Upper valence energy levels and orbital compositions for
[Pt(O2CH)4(H20).]?" based on a quasi-relativisticoXSW calculation.

bridged dimers [B{SOy)4L2]* and [PE(HPQy)4L2]* (L = H0,
Cl, Br) were very similar to those of the acetate-bridged
complexes, and therefore analogous spectral assignments should

tions revealed that the upper metal-based levels had significant@PPly. This correspondence enabled a rationalization of the

ligand character due to the large stabilization of the Pt(lll) 5d
orbitals.

From the X-SW calculations, the electronic spectrum of
[Pt(O2CCHg)4(H20),]2" was predicte®® to comprise transitions
which were largely ligand-to-metal charge-transfer (LMCT) in
nature, in contrast with the spectrum of the corresponding
Rh(Il) complex where the low-lying transitions are significantly
more metal-basetb4ac |t was also noted that, in general,
the spectrzt ¢ of the related sulfate- and hydrogen phosphate-
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previously anomalous MCD report&dor the intense UV band

in both the [P¥SOy)a(H20))>" and [Pi(HPOs)s(H20)]*
complexes. Thus, the %&SW calculations on [B{O.CH)s-
(H20)2])%" allow new insights into the nature of the transitions
observed in the spectra of the sulfate- and hydrogen phosphate-
bridged Pt(Ill) dimers. The re-examination of the spectra of
these complexes in light of these calculations is therefore the
subject of this report.

Results and Discussion

Since the [PIOglL ;] dimeric unit is common to [B(SOy)4-
(H20)2]27, [P(HPOy)4(H20),] 2= and [F’ﬁ(02cCH3)4(H20)2]2Jr
and the PtPt distances vary less than 0.13#6 the upper
valence MO energies determined forPLCH)4(H20),]%+ from
the quasi-relativistic ¥-SW calculation should serve as a
reasonable guide to the electronic structure of all three com-
plexes. Accordingly, to aid in the following discussion, the
upper valence energy levels for JED,CH)4(H20);]?" in Dan
symmetry are shown in Figure 1 along with an orbital
description of each level in terms of diplatinum fPtbridge-
oxygen (Q), and axial water (¢)) parentage. The deviation
from parentD4, symmetry is not significant as evidenced by
the small splitting of the (3,bxg) and (ku,byy) levels.
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Figure 2. Absorption spectrum of [R{SOy)4(H20),]?~ in aqueous bL5Q,, pH ~5.

The room temperature absorption spectrum ob(B®y)s- ' " T "
(H20);]%2~ shown in Figure 2 is essentially identical to spectra
previously reporte@< The spectrum of the analogous hydrogen
phosphate-bridged complex is also very simifft. A total of
five bands are apparent from the spectrum shown in Figure 2,
labeled A, B, B,, Ci, and G in order of increasing energy.
Band G is only resolved in the spectrum of the sulfate complex
at ~39 000 cnt! while band G is observed in both complexes
at around 44 500 cri.

Band G has been previously assigned to t{®,,,Pt) — o*-

(Pt) transition due to the dramatic shift of this band with change
in the axial substituenf&® However, in a later study, both
bands G and G were reassigned to S8 o*(Pt—0y) or HPQy

— 0*(Pt—0y) charge-transfer transitions on the basis of the
observed MCD* In the absorption spectriof [Pty(O,- L L 1 L
CCHg)4(H20),]%", the intense UV absorption consisted of a 30000 35000 40000 45000
single broad band centered at approximately 37 500 criRrom -1
the calculated X-SW transition state energies and oscillator S0,: o(L,Pt)—ox(Pt,) Energy/cm
strengths, a number of transitions were predicted to contribute Figure 3. Plot of the o(L,Pt) — ¢*(Pt,) transition energies in

to this band which were mostly OAe o*(Pt—0y) in nature3® [Pt(SQy)Lz]™ and [PE(P,OsH2)4Lz]" (L = OH,, CI, Br, SCN)

In addition, theo(O,,Pt) — o*(Pty) transition (corresponding ~ complexes.

to 9a, — 8bs, in Figure 1), which has partiat(Pt) — o*(Pty)

character, was also predicted to make a significant contribution with either SQ — ¢*(Pt—0y) or HPQ; — ¢*(Pt—0p) LMCT

to this band. This fact, as well as the coincidence of bapnd C transitions. These transitions are consistent with the negative
in the sulfate-bridged complex with the intense UV band in the MCD A term observed for the intense UV b&fdind also
acetate-bridged complex, is consistent with band b@ing explain why the MCD is centered around 45 000 ¢mather
assigned to the(Oy,Pt) — o*(Pt;) LMCT transition. than band €lying to lower energy at-39 000 cnr™.

Further evidence for the nature of band €bmes from a Band B, observed at~26 000 cnt! in the sulfate- and
comparison of thes(L,Pt) — o*(Pty) transition energies in the  hydrogen phosphate bridged complexes, has been previously
axially substituted adducts of the sulfate- and pop (Fep  assigne®f ¢ to thesr*(Pty) — o*(Pt,) transition consistent with
P,0sH,?")-bridged complexe®2¢7a" The observed transition  the positive MCD A term observed for this baffd However,
energies for the two series are plotted in Figure 3. The our Xa-SW calculation on the formate-bridged complex indi-
significant linear correlation observed between these two cates that the upper*(Pt,) level, corresponding to the )
systems argues favorably for the assignment of bantb ¢he and 6hy orbitals in Figure 1, has significant-70%) bridge
0(Ow,Pt) — o*(Ptp) transition in the sulfate complex. character, in marked contrast to the uppetRh,) level in

Band G at approximately 44 500 cm in both the sulfate  Rh(O,CH)4(H20),, which has around 80% metal charac@t.
and hydrogen phosphate complexes is now more compatibleThis implies that transitions from these orbitals to théPt,)

- 8hs, level are more charge transfer in nature than metal-based
) (é)-l\l/ls.;;Cl’E;Eiér,tAﬁ.s%].'; Vg}uﬁlﬂgﬁ%r,cgf}?';lg?gy,zﬁ.1£§/im(.b)cﬁ$’. and thus are more appropriately assigned g@s-@*(Pty) rather
S0c.1985 107, 4662. (c) Che, C.-M.; Mak, T. C. W.; Miskowski, v.  thanz*(Ptz) — o*(Ptz). The MCD observed for bandiHs
M.; Gray, H. B.J. Am. Chem. S0d.986 108 7840. (d) Che, C.-M.; also consistent with this assignment. Further evidence for the
g.hg,. KMIEKOSVZ?(P\\/N -,\‘AS_';”GO:g&/‘CL‘?g‘_g_ﬁgﬁ%ﬁfg?-s(g&gég%gn' assignment of band JBin the sulfate-, hydrogen phosphate-,
2781 (f) Che, C.-M.; Lee, W.-M.; Cho, K.-G. Am. Chem. S04988 and acetate-bridged Pt(Ill) dimer complexes comes from the
110, 5407. significant lower energy shift of this baffP-5¢¢ as the axial
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ligands are changed from,B to ClI and Br, consistent with  complexes. On the basis of theexdSW calculated transition
the o*(Pty) character of the acceptor orbital. energie® for [Pt,(O,CH)4(H20),]2", the d(Pt) — o*(Pty) (83
Band B, observed between 28 500 and 30 000 &in the — 8hy,) transition is a very strong possibility for the assignment
sulfate- and hydrogen phosphate-bridged complexes, occurs agf band B as it is predicted to lie slightly to higher energy of
avery weak absor.ption to the higher energy side of band B pand g at~29 700 cm. Furthermore, the calculated oscillator
?ﬁ?ﬁr’;‘:‘gﬁ;‘?l\\llgi Er;?/?oizilcgggggggfé?&%ﬁﬁrﬁ?)&?;ie strength of this transition is very low<(0.001), in agreement
forbiddeno*(Pty) — o*(Pty) transition on the basis that tldé- with the very weak intensity observed for bang B
(Pt) level was thought to lie below the*(Pt,) level due to the Band A, observed between 20 000 and 21 500t the
shorter P+Pt distances in both the sulfate- and hydrogen sulfate- and hydrogen phosphate-bridged complexes, has been
phosphate-bridged complexes compared to the pyrophosphitepreviously assigned to the corresponding spin-triptéPt,) —
bridged complexes. However, from the upper valence levels 5*(Pt,) transition due to the very weak intensity and emission
of [Pty(O2CH)4(H20)2]** shown in Figure 1, thé*(Pt;) (7bz) observed for this excited stae® Given that the upper
level is seen to lie above the uppet(Pty) (Sbig6byg) levels, 7*(Pty) level is predominantly O(bridge) in character, band A

and thus thé*(Pt,) — o*(Pty) transition should lie below band is now more correctly assianed as the spin-triplet©0*(Pt.
Bi1. Since the PtPt distances are similar in [RO,CCHg)s- transition y 9 P Pl (Pt2)

(H20)]%*, [P(SQu)s (H20)]%", and [Pi(HPOs)s(H20)]%
dimers, the same argument should also hold for the latter two 1C951614L



